Difference between revisions of "Digital Electronics"

From ACSL Category Descriptions
Jump to navigation Jump to search
(Created page with "This topic is an extension of the topic of Boolean Algebra which includes a more thorough description of the category in terms of determining whether a circuit results in...")
 
Line 1: Line 1:
This topic is an extension of the topic of [[Boolean Algebra]] which includes a more thorough description of the category in terms of determining whether a circuit results in a TRUE or FALSE value using truth tables or how to simplify a circuit to as few gates as possible.  Electrical engineers use the following symbols to design electrical circuits that are used inside the computer’s hardware.  The following table illustrates the equivalent Boolean algebra expression and truth table for each gate.
This topic is an extension of the topic of [[Boolean Algebra]] which includes a more thorough description of the category in terms of determining whether a circuit results in a TRUE or FALSE value using truth tables or how to simplify a circuit to as few gates as possible.  Electrical engineers use the following symbols to design electrical circuits that are used inside the computer’s hardware.  The following table illustrates the equivalent Boolean algebra expression and truth table for each gate.
NAME GRAPHICAL SYMBOL ALGEBRAIC EQUATION TRUTH TABLE


 
::{| class="wikitable" style="text-align: center"
X = A
|-
A   X
!<math>NAME</math>
0     0
!<math>GRAPHICAL SYMBOL</math>
1     1
!<math>ALGEBRAIC EXPRESSION</math>
 
!<math>TRUTH TABLE</math>
NOT
|-
 
!BUFFER
X =
| Symbol
A   X
| X = A
0     1
|{| class="wikitable" style="text-align: center"
1     0
!<math>A</math>
 
!<math>X</math>
AND
| 0 0
X = AB or A*B
| 1 1
A   B    X
|-
0     0    0
|}
0    1     0
!NOT
1     0    0
| Symbol
1    1    1
| X = ~A
 
| A X
NAND
| 0 1
 
| 1 0
X =   or 
|-
A   B    X
!AND
0     0    1
| Symbol
0    1     1
| X = ~A  
1    0    1
| A X
1    1    0
| 0 1
 
| 1 0
OR
|-
 
!AND
X = A+B
| Symbol
A   B    X
| X = ~A
0     0    0
| A X
0    1    1
| 0 1
1     0     1
| 1 0
1    1    1
|-
 
!AND
NOR
| Symbol
 
| X = ~A  
X =
| A X
A   B    X
| 0 1
0     0    1
| 1 0
0    1     0
|-
1    0    0
!AND
1    1    0
| Symbol
 
| X = ~A
EXCLUSIVE-OR
| A X
(XOR)
| 0 1
 
| 1 0
X = AB A   B    X
|-
0     0    0
!AND
0    1    1
| Symbol
1     0     1
| X = ~A  
1    1    0
| A  X
 
| 0 1
EQUIVALENCE
| 1 0
(XNOR)
|-
 
!AND
X =
| Symbol
A   B    X
| X = ~A
0     0    1
| A X
0    1     0
| 0 1
1    0    0
| 1 0
1    1    1
|-
|}

Revision as of 16:01, 18 August 2018

This topic is an extension of the topic of Boolean Algebra which includes a more thorough description of the category in terms of determining whether a circuit results in a TRUE or FALSE value using truth tables or how to simplify a circuit to as few gates as possible. Electrical engineers use the following symbols to design electrical circuits that are used inside the computer’s hardware. The following table illustrates the equivalent Boolean algebra expression and truth table for each gate.

[math]NAME[/math] [math]GRAPHICAL SYMBOL[/math] [math]ALGEBRAIC EXPRESSION[/math] [math]TRUTH TABLE[/math]
BUFFER Symbol X = A class="wikitable" style="text-align: center" [math]A[/math] [math]X[/math] 0 0 1 1

!NOT | Symbol | X = ~A | A X | 0 1 | 1 0 |- !AND | Symbol | X = ~A | A X | 0 1 | 1 0 |- !AND | Symbol | X = ~A | A X | 0 1 | 1 0 |- !AND | Symbol | X = ~A | A X | 0 1 | 1 0 |- !AND | Symbol | X = ~A | A X | 0 1 | 1 0 |- !AND | Symbol | X = ~A | A X | 0 1 | 1 0 |- !AND | Symbol | X = ~A | A X | 0 1 | 1 0 |- |}