Difference between revisions of "Digital Electronics"

From ACSL Category Descriptions
Jump to navigation Jump to search
Line 5: Line 5:
::{| class="wikitable" style="text-align: center"
::{| class="wikitable" style="text-align: center"
|-
|-
!<math>NAME</math>
!'''NAME'''
!<math>GRAPHICAL SYMBOL</math>
!'''GRAPHICAL SYMBOL'''
!<math>ALGEBRAIC EXPRESSION</math>
!'''ALGEBRAIC EXPRESSION'''
!<math>TRUTH TABLE</math>
!'''TRUTH TABLE'''
|-
|-
!BUFFER
!'''BUFFER'''
| Symbol
| Symbol
| X = A
| X = A
| truth table
| truth table
|-
|-
!NOT
!'''NOT'''
| Symbol
| Symbol
| X = <math>\overline{A}</math>  
| X = <math>\overline{A}</math>  
Line 22: Line 22:
|| 1  0
|| 1  0
|-
|-
!AND
!'''AND'''
| Symbol
| Symbol
| X = <math>AB</math> or <math>A*B</math>  
| X = <math>AB</math> or <math>A*B</math>  
Line 31: Line 31:
| 1 1 1
| 1 1 1
|-
|-
!NAND
!'''NAND'''
| Symbol
| Symbol
| X = <math>\overline{AB}</math> or <math>\overline{A*B}</math>
| X = <math>\overline{AB}</math> or <math>\overline{A*B}</math>
Line 40: Line 40:
| 1 1 0
| 1 1 0
|-
|-
!OR
!'''OR'''
| Symbol
| Symbol
| X = <math>A+B</math>  
| X = <math>A+B</math>  
Line 49: Line 49:
| 1 1 1
| 1 1 1
|-
|-
!NOR
!'''NOR'''
| Symbol
| Symbol
| X = <math>\overline{A+B}</math>
| X = <math>\overline{A+B}</math>
Line 58: Line 58:
| 1 1 0
| 1 1 0
|-
|-
!XOR
!'''XOR'''
| Symbol
| Symbol
| X = <math>A \oplus B</math>
| X = <math>A \oplus B</math>
Line 67: Line 67:
| 1 1 0
| 1 1 0
|-
|-
!XNOR
!'''XNOR'''
| Symbol
| Symbol
| X = <math>\overline{A \oplus B}</math>
| X = <math>\overline{A \oplus B}</math>
Line 84: Line 84:
Find all ordered 4-tuples (A, B, C, D), which make the following circuit FALSE:
Find all ordered 4-tuples (A, B, C, D), which make the following circuit FALSE:


 
[["f:\ACSl Category Descriptions\Pictures\de s1.png]]


Solution:  This circuit diagram translates to:  <math>(\overline{C+D}+B) \oplus (\overline{A}B) \oplus (\overline{C+D})</math>.
Solution:  This circuit diagram translates to:  <math>(\overline{C+D}+B) \oplus (\overline{A}B) \oplus (\overline{C+D})</math>.
Line 294: Line 294:
<math>=\overline{AB}*\overline{\overline{C}}+\overline{D}=(\overline{A}+B)C+\overline{D}</math>
<math>=\overline{AB}*\overline{\overline{C}}+\overline{D}=(\overline{A}+B)C+\overline{D}</math>
This has 5 gates and <math>\overline{A}C+BC+\overline{D}</math>  has 6 so the above expression is best.
This has 5 gates and <math>\overline{A}C+BC+\overline{D}</math>  has 6 so the above expression is best.
= Video Resources =
<!--
{|
|-
| <youtube width="300" height="180">URL</youtube>
| [URL ''TITLE'' ('''AUTHOR''')]
DESCRIPTION
|}
-->

Revision as of 03:14, 19 August 2018

This topic is an extension of the topic of Boolean Algebra which includes a more thorough description of the category in terms of determining whether a circuit results in a TRUE or FALSE value using truth tables or how to simplify a circuit to as few gates as possible. Electrical engineers use the following symbols to design electrical circuits that are used inside the computer’s hardware. The following table illustrates the equivalent Boolean algebra expression and truth table for each gate.

Definitions

NAME GRAPHICAL SYMBOL ALGEBRAIC EXPRESSION TRUTH TABLE
BUFFER Symbol X = A truth table
NOT Symbol X = [math]\overline{A}[/math] ! A X 0 1 1 0
AND Symbol X = [math]AB[/math] or [math]A*B[/math] A B X 0 0 0 0 1 0 1 0 0 1 1 1
NAND Symbol X = [math]\overline{AB}[/math] or [math]\overline{A*B}[/math] A B X 0 0 1 0 1 1 1 0 1 1 1 0
OR Symbol X = [math]A+B[/math] A B X 0 0 0 0 1 1 1 0 1 1 1 1
NOR Symbol X = [math]\overline{A+B}[/math] A B X 0 0 1 0 1 0 1 0 0 1 1 0
XOR Symbol X = [math]A \oplus B[/math] A B X 0 0 0 0 1 1 1 0 1 1 1 0
XNOR Symbol X = [math]\overline{A \oplus B}[/math] A B X 0 0 1 0 1 0 1 0 0 1 1 1

Sample Problems

Sample Problem 1

Find all ordered 4-tuples (A, B, C, D), which make the following circuit FALSE:

"f:\ACSl Category Descriptions\Pictures\de s1.png

Solution: This circuit diagram translates to: [math](\overline{C+D}+B) \oplus (\overline{A}B) \oplus (\overline{C+D})[/math]. The table has the following headings: 1=[math]\overline{C+D}[/math], 2=[math]1+\overline{B}[/math], 3=[math]\overline{A}B[/math], 4=[math]A \oplus B[/math], and 5=[math]4 \oplus 1[/math]. Thus, the 4-tuples (0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,0,1), (1,1,1,0), and (1,1,1,1) all make the circuit FALSE.

}|

Sample Problem 2

Find all ordered triplets (A, B, C) which make the following circuit FALSE:

Solution: The circuit translates to the Boolean expression [math]\overline{AB}+C[/math]. To find when this is FALSE we can equivalently find when the [math]\overline{\overline{AB}+C}[/math] is TRUE. We can simplify this by applying DeMorgan’s Law and cancelling the double not over AB to yield [math]AB\overline{C}[/math] . This is TRUE when for (1,1,0) only.

Sample Problem 3

Simplify the following digital circuit as a Boolean algebra expression using the fewest gates possible:

Solution: This translates to: [math]\overline{A*B+\overline{C}*D}[/math] . Simplify: [math]\overline{(A*B+\overline{C})*D}=\overline{AB+\overline{C}}+\overline{D}[/math] [math]=\overline{AB}*\overline{\overline{C}}+\overline{D}=(\overline{A}+B)C+\overline{D}[/math] This has 5 gates and [math]\overline{A}C+BC+\overline{D}[/math] has 6 so the above expression is best.

Video Resources

[math]A[/math] [math]B[/math] [math]C[/math] [math]D[/math] [math]1[/math] [math]2[/math] [math]3[/math] [math]4[/math] [math]5[/math]
0 0 0 0 1 1 0 1 0
0 0 0 1 0 1 0 1 1
0 0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1 1
0 1 0 0 1 1 1 0 1
0 1 0 1 0 0 1 1 1
0 1 1 0 0 1 1 1 1
0 1 1 1 0 0 1 1 1
1 0 0 0 1 1 0 1 0
1 0 0 1 0 1 0 1 1
1 0 1 0 0 1 0 1 1
1 0 1 1 0 1 0 1 1
1 1 0 0 1 1 0 1 0
1 1 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0